Package: ssr 0.1.1

Enrique Garcia-Ceja

ssr: Semi-Supervised Regression Methods

An implementation of semi-supervised regression methods including self-learning and co-training by committee based on Hady, M. F. A., Schwenker, F., & Palm, G. (2009) <doi:10.1007/978-3-642-04274-4_13>. Users can define which set of regressors to use as base models from the 'caret' package, other packages, or custom functions.

Authors:Enrique Garcia-Ceja [aut, cre]

ssr_0.1.1.tar.gz
ssr_0.1.1.zip(r-4.5)ssr_0.1.1.zip(r-4.4)ssr_0.1.1.zip(r-4.3)
ssr_0.1.1.tgz(r-4.4-any)ssr_0.1.1.tgz(r-4.3-any)
ssr_0.1.1.tar.gz(r-4.5-noble)ssr_0.1.1.tar.gz(r-4.4-noble)
ssr_0.1.1.tgz(r-4.4-emscripten)ssr_0.1.1.tgz(r-4.3-emscripten)
ssr.pdf |ssr.html
ssr/json (API)
NEWS

# Install 'ssr' in R:
install.packages('ssr', repos = c('https://enriquegit.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/enriquegit/ssr/issues

Datasets:

On CRAN:

data-sciencemachine-learningregressionsemi-supervised-learning

4.43 score 2 stars 27 scripts 143 downloads 1 mentions 2 exports 75 dependencies

Last updated 5 years agofrom:bbf935ecac. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winNOTENov 08 2024
R-4.5-linuxNOTENov 08 2024
R-4.4-winNOTENov 08 2024
R-4.4-macNOTENov 08 2024
R-4.3-winNOTENov 08 2024
R-4.3-macNOTENov 08 2024

Exports:split_train_testssr

Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcpprecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr

Introduction to the ssr package

Rendered fromssr-package-vignette.Rmdusingknitr::rmarkdownon Nov 08 2024.

Last update: 2019-09-01
Started: 2019-08-13